Actuarial Inference and Applications of Hidden Markov Models

نویسنده

  • Matthew Charles Till
چکیده

Hidden Markov models have become a popular tool for modeling long-term investment guarantees. Many different variations of hidden Markov models have been proposed over the past decades for modeling indexes such as the S&P 500, and they capture the tail risk inherent in the market to varying degrees. However, goodness-of-fit testing, such as residual-based testing, for hidden Markov models is a relatively undeveloped area of research. This work focuses on hidden Markov model assessment, and develops a stochastic approach to deriving a residual set that is ideal for standard residual tests. This result allows hidden-state models to be tested for goodness-of-fit with the well developed testing strategies for single-state models. This work also focuses on parameter uncertainty for the popular long-term equity hidden Markov models. There is a special focus on underlying states that represent lower returns and higher volatility in the market, as these states can have the largest impact on investment guarantee valuation. A Bayesian approach for the hidden Markov models is applied to address the issue of parameter uncertainty and the impact it can have on investment guarantee models. Also in this thesis, the areas of portfolio optimization and portfolio replication under a hidden Markov model setting are further developed. Different strategies for optimization and portfolio hedging under hidden Markov models are presented and compared using real world data. The impact of parameter uncertainty, particularly with model parameters that are connected with higher market volatility, is once again a focus, and the effects of not taking parameter uncertainty into account when optimizing or hedging in a hidden Markov are demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing Busy Customer Portfolio Using Hidden Markov Model

Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...

متن کامل

MCMC for hidden continuous - time

Hidden Markov models have proved to be a very exible class of models, with many and diverse applications. Recently Markov chain Monte Carlo (MCMC) techniques have provided powerful computational tools to make inferences about the parameters of hidden Markov models, and about the unobserved Markov chain, when the chain is deened in discrete time. We present a general algorithm, based on reversib...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Probability , Statistics , and Computational Science Niko

In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur ...

متن کامل

Inference in Hybrid Systems with Applications in Neural Prosthetics

This thesis develops new hybrid system models and associated inference algorithms to create a “supervisory decoder” for cortical neural prosthetic devices that aim to help the severely handicapped. These devices are a brain-machine interface, consisting of surgically implanted electrode arrays and associated computer decoding algorithms, that enable a human to control external electromechanical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011